Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass

نویسندگان

  • Hiroyuki Inoue
  • Stephen R Decker
  • Larry E Taylor
  • Shinichi Yano
  • Shigeki Sawayama
چکیده

BACKGROUND Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. RESULTS Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysis of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. CONCLUSIONS Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and characterized. The optimized mixture of these five enzymes was highly effective for the hydrolysis of PCS glucan, providing a foundation for future improvement of the T. cellulolyticus cellulase system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of Talaromyces cellulolyticus Strain Y-94, a Source of Lignocellulosic Biomass-Degrading Enzymes

Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) is a promising fungus for cellulase production. Here, we present the draft genome sequence of T. cellulolyticus strain Y-94. The genome is 36.4 Mbp long and contains genes for several enzymes involved in the degradation of lignocellulosic biomass, including cellulases, hemicellulases, pectinases, and amylases.

متن کامل

Crystal Structure of Talaromyces cellulolyticus (Formerly Known as Acremonium cellulolyticus) GH Family 11 Xylanase

Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is one of the mesophilic fungi that can produce high levels of cellulose-related enzymes and are expected to be used for the degradation of polysaccharide biomass. In silico analysis of the genome sequence of T. cellulolyticus detected seven open reading frames (ORFs) showing homology to xylanases from glycoside hydrolase ...

متن کامل

Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials

BACKGROUND Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this stu...

متن کامل

Response of Cellulase Activity in pH-Controlled Cultures of the Filamentous Fungus Acremonium cellulolyticus

Cellulase production was investigated in pH-controlled cultures of Acremonium cellulolyticus. The response to culture pH was investigated for three cellulolytic enzymes, carbomethyl cellulase (CMCase), avicelase, and beta-glucosidase. Avicelase and beta-glucosidase showed similar profiles, with maximum activity in cultures at pH 5.5-6. The CMCase activity was highest in a pH 4 culture. At an ac...

متن کامل

Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases

BACKGROUND Chlorophyte microalgae have a cell wall containing a large quantity of cellulose Iα with a triclinic unit cell hydrogen-bonding pattern that is more susceptible to hydrolysis than that of the cellulose Iβ polymorphic form that is predominant in higher plants. This study addressed the enzymatic hydrolysis of untreated Chlorella homosphaera biomass using selected enzyme preparations, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014